Dynamics of initiation, termination and reinitiation of DNA translocation by the motor protein EcoR124I.
نویسندگان
چکیده
Type I restriction enzymes use two motors to translocate DNA before carrying out DNA cleavage. The motor function is accomplished by amino-acid motifs typical for superfamily 2 helicases, although DNA unwinding is not observed. Using a combination of extensive single-molecule magnetic tweezers and stopped-flow bulk measurements, we fully characterized the (re)initiation of DNA translocation by EcoR124I. We found that the methyltransferase core unit of the enzyme loads the motor subunits onto adjacent DNA by allowing them to bind and initiate translocation. Termination of translocation occurs owing to dissociation of the motors from the core unit. Reinitiation of translocation requires binding of new motors from solution. The identification and quantification of further initiation steps--ATP binding and extrusion of an initial DNA loop--allowed us to deduce a complete kinetic reinitiation scheme. The dissociation/reassociation of motors during translocation allows dynamic control of the restriction process by the availability of motors. Direct evidence that this control mechanism is relevant in vivo is provided.
منابع مشابه
Supplementary information to “ Dynamics of initiation , termination and reinitiation of DNA translocation by the motor protein EcoR 124 I ”
Determination of the reinitiation time We define a single translocation event as the time from when the DNA end-to-end distance starts to decrease due to translocation activity until the point where the end-toend distance returns to its resting length due to termination of translocation. Considering only one of the translocation directions of a bidirectionally translocating enzyme, the reinitia...
متن کاملRecycling of protein subunits during DNA translocation and cleavage by Type I restriction-modification enzymes
The Type I restriction-modification enzymes comprise three protein subunits; HsdS and HsdM that form a methyltransferase (MTase) and HsdR that associates with the MTase and catalyses Adenosine-5'-triphosphate (ATP)-dependent DNA translocation and cleavage. Here, we examine whether the MTase and HsdR components can 'turnover' in vitro, i.e. whether they can catalyse translocation and cleavage ev...
متن کاملThe helical domain of the EcoR124I motor subunit participates in ATPase activity and dsDNA translocation
Type I restriction-modification enzymes are multisubunit, multifunctional molecular machines that recognize specific DNA target sequences, and their multisubunit organization underlies their multifunctionality. EcoR124I is the archetype of Type I restriction-modification family IC and is composed of three subunit types: HsdS, HsdM, and HsdR. DNA cleavage and ATP-dependent DNA translocation acti...
متن کاملWhen a helicase is not a helicase: dsDNA tracking by the motor protein EcoR124I.
Using a combination of single molecule and bulk solution measurements, we have examined the DNA translocation activity of a helicase, the Type I restriction modification enzyme EcoR124I. We find that EcoR124I can translocate past covalent interstrand crosslinks, inconsistent with an obligatory unwinding mechanism. Instead, translocation of the intact dsDNA occurs principally via contacts to the...
متن کاملTranscription termination factor La is also an initiation factor for RNA polymerase III.
La RNA-binding protein is a transcription termination factor that facilitates recycling of template and RNA polymerase (pol) 111. Transcription complexes preassembled on immobilized templates were depleted of pol III after a single round of RNA synthesis in the presence of heparin and sarkosyl. The isolated complexes could then be complemented with highly purified pol III and/or recombinant La ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 24 23 شماره
صفحات -
تاریخ انتشار 2005